Posts in category

Nanotechnology


Student Spotlight: Sustainable porous carbon nanofiber alternatives to oil-based materials

Read More

The potential for nanofiber

Read More

Student Spotlight: Multifunctional temperature-responsive textiles

Read More

Figure 1. Porous carbon nanofibers derived from organosolv lignin and developed for glucose sensing.

The Bernal Institute hosts a multidisciplinary team of world-leading materials scientists and engineers at University of Limerick. The composite cluster aims to develop of new carbon fiber materials from sustainable resources (lignin) for their use in composites with thermoplastic matrices from natural, sustainable supplies. Dr. Beaucamp Mc Loughlin completed her Material Science master’s degree at …

170
Scotland-based CelluComp has invented a proprietary process that is unique in allowing the properties of cellulose nanofibers (CNF) made from root vegetable waste to be fully utilized.

Nanofiber is a continuous fiber, which has a range of billionths of a meter. As a definition, nanofibers are generally classified as a fiber that is 1 nm to 100 nm, with a length of 100 times or more the diameter. In nonwovens and fabrics, this classification is often extended to include fibers as a …

338
Polarized light microscopy of liquid crystal

The Soft Functional Materials Lab @ VCU is motivated to apply fundamental science to solving challenging and practical problems. The lab focuses on the processing and characterization of soft functional materials with applications in biomedical and environmental engineering. Lab members work at the interface of polymer science, nanotechnology and biotechnology, to design, process, and apply …

224

By Haydn Kriel, R&D Manager; Dr. Megan Coates, Senior Scientist; and Dr. Eugene Smit, CEO, The Stellenbosch Nanofiber Company (Pty.) Ltd. (SNC)

Nanofibers have a range of applications in medicine, cosmetics, environmental monitoring, energy generation and the manufacture of smart materials. The high surface area-to-volume ratio of these nanomaterials is highly beneficial for drug delivery and catalysis, and their controllable pore sizes, that can be tailored to selectively exclude components like bacteria or pollutants, makes nanofiber webs ideal for filtration, tissue engineering and wound care. Nanofibers are also versatile in that additives can be encapsulated within the fibers or coated on to the surface. The choice of the polymer and the nanofiber dimensions can be changed to obtain specific material properties.

307

Ever since the major investment in nanotechnology in the 1990s, there has been significant advancement in this area with the availability of various products, which have superior properties making them valuable for a wide range of applications.

2.1k